PVNO for Critical Infrastructure Reliability and Security

By: Sylvain Riendeau, Barmak Khosravi

Q Hydro Québec

Alek Goulet , Antonio Aranibar

March 26, 2019

Agenda

- **Critical Infrastructure Organization (CIO) Field Applications**
- Current Commercial Cellular Pain Points & Architecture
- Potential Options
- PVNO Definition & Architecture
- Paving the Road to PVNO and Beyond
- □ Field Area Network Future
- Conclusion

Electric Utilities Field applications

Fixed - IIoT

AMI - Smart Meters

DA - Distribution automation (switches, reclosers)

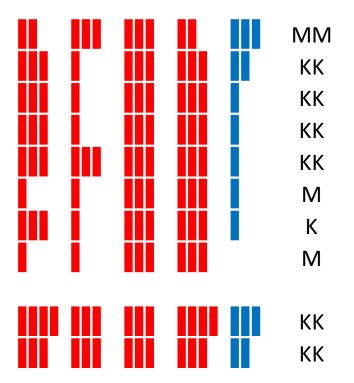
FLISR – Fault Location and Restoration

Telemetry (Dam, Substation Yard, Distribution Grid)

DER - Distributed Energy Resources

DR- Demand Response

Microgrid


Distributed Grid Stability Reserve (future)

□ Mobile - Workforce Management

LMR – Land Mobile Radio

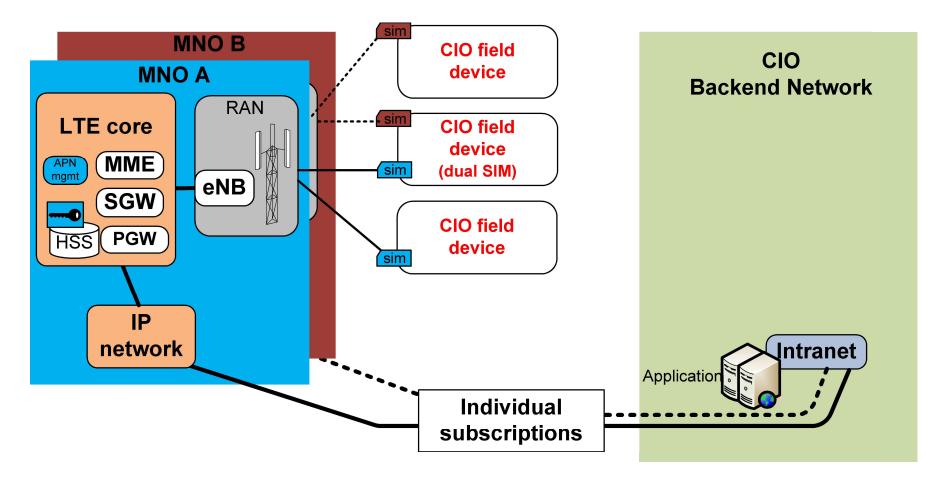
Data - Dispatch, Work Orders, GIS

kail Operational and Safety critical field applications

- Train Management and Dispatch
 - CTC (Centralized Train Control)
- Preventive Maintenance
 - □ HBDs (Hot Box Detectors)
 - "Machine Vision" portals
 - WILD (Wheel Impact Load Detector)
 - Consist Verification
 - AEI (Automatic Equipment Identifier)
- Track Verification
 - Autonomous Track Inspection
 - Autonomous Track Geometry Measurement
- Advanced Train Control
 - WIUs (Wayside Interface Units)
 - ETMS (Electronic Train Control Management System Onboard Systems)
 - Passenger Connectivity
 - Essential Best Effort Based and Emergency calling

103 311

נכום שוול כוככרן



NORTHWEST Commercia	al Cellular Service Pain Points	
SIM cards: SIM lock-in:	Complex device and SIM management Subscription base Changing carrier SIM requires a visit to every site (\$\$\$)	
Network:	Complex IP and APN management	Х
Security:	Authentication element (HSS and PGW) and SIM credentials are owned by the carriers	LA ADOR
Reliability: WASHINGTON Spokane	Real-time carrier diversity(failover) requires multiple SIMs subscriptions with different IP addresses, more expensive multi-SIM devices (\$\$\$)	
Coverage: Bose Eureka	Limited to the operator's coverage (98% of pop. according to CTWA) No incentive for expansion. Largely underserved CIO territory (Remote Rural)	
Reno NEVADA	UTAH COLORADO United States St. Louis W.VA. DEL.	

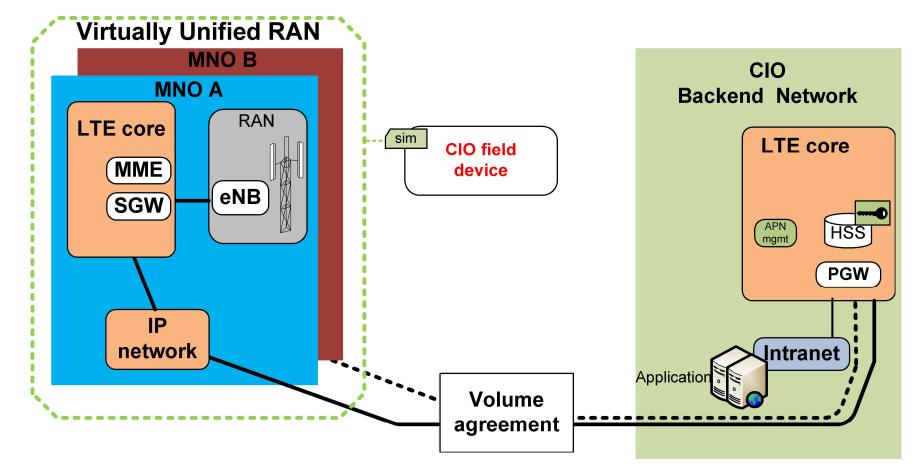
ういて

Current Commercial Cellular Architecture

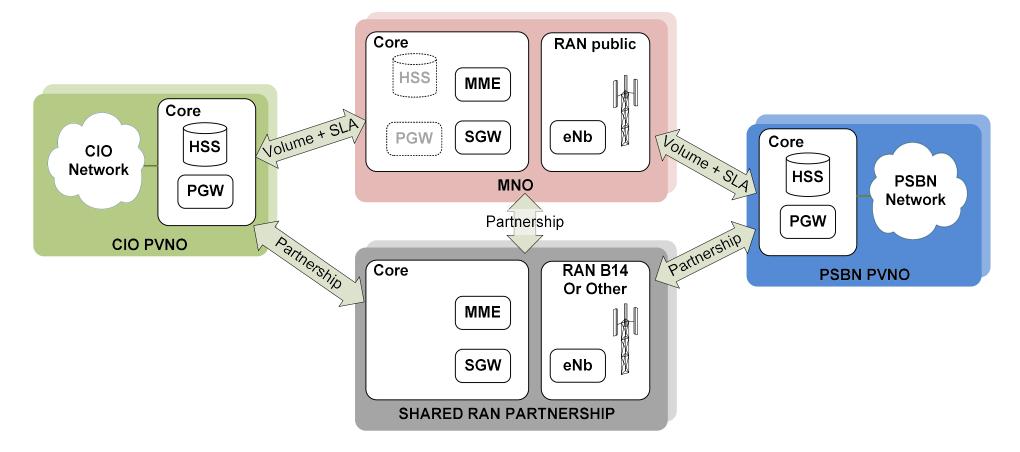
Potential Options

	Dedicated APN with SIM cards (actual)	Dedicated APN with eSIM + PGW	Non-3GPP Private FAN (WiMAX, LoRa,)	PVNO	
Reliability			•		Good
MNO / vendor lock-in		•			Acceptable
Security					Poor
CAPEX + OPEX					With Shared RAN
Coverage Expansion Potential					
Interoperability with PSBN					

eSIM: Multi-profile reprogrammable SIM (card, chip, soft.) PGW: Packet Gateway


What is PVNO?

PVNO = Private Virtual Network Operator


PVNO is a « Full-MVNO » as per Telecom Decision CRTC 2015-496, but exclusively for CIO's own operational needs

- Doesn't own a frequency licence;
- Frequency bands and RAN are provided by at least one MNO or other partners (ex: PS B14 + Shared RAN);
- Doesn't resell commercial cellular services to the general public (as opposed to Full-MVNO);
- Must own/rent a cellular packet core (like Full-MVNO);
- Use its own network subscription identifier SIM cards/IMSI number (<u>MNC required</u>);

PVNO Architecture

PVNO integration with Shared RAN and PSBN

Paving the road to PVNO and beyond

Break MNO's chain - SIM cards lock-in : **eSIM** 1. Ability to change remotely MNOs as needed. Possible Control of wireless IP addresses and APN : PGW Now 2. Change MNOs while maintaining IP addresses (IP anchor point). Encrypted Interface between CIO and MNO (IPSec). Control of security keys + RAN diversity : **PVNO** 3. Volume agreements with MNOs. Use CIO credentials on the eSIM (IMSI/MNC, keys). Regulatory challenges Expand coverage in partnership: SHARED RAN 4. Invest where it matters... where MNO's don't go. Access to Broadband Frequency is the challenge !

Field Area Network's future is 3GPP

- PS/CIO requirements are being added since release 13 (Push-to-talk, QoS, ...)
- **PVNO Integrates with other technologies** (WiFi, Multefire, ...)
 - MNOs already offload cellular traffic to Wi-Fi... also possible with a PVNO

Within 5-10 yrs – LEO/vLEO Satellite:

□ Multiple Low Earth Orbit satellite networks will be in service (Telesat, SpaceX, OneWeb, ...).

- Coverage will be ubiguitous and performance shall be similar to LTE
- Seamless integration with cellular and PVNO (3GPP release 15)

Within 10-20 yrs:

Smart Meters will be replaced, and include LTE-M, NB-IoT.

- LMR Narrow-Band network will be replaced by push to talk VoLTE.
- Next Generation Smart Transportation Systems
- Evolution to 5G / Network slicing / SDN / SDWAN / Edge computing

12

Wi (Ei)

PVNO + Shared RAN is a win-win for everyone

 Critical Infra. Op ↑ Reliability ↑ Security ↑ Coverage ↑ Innovation ↓ Costs 	 Perators ↑ QoS ↑ Safety ↑ Shared RAN ↑ Process efficiency ↑ No Vendor lock-in 	Public Safety↑ Reliability↑ QoS↑ Security↑ Safety↑ Coverage↑ B14 optimal use↑ Technolology↑ Process efficiency↓ Costs↑ No Vendor lock-in	
MNOs ↑ Revenues ↑ Traffic ↑ Innovation ↑ Freq. ROI	 New services (SLA) Coverage incentive Reliability incentive Business efficiency 	 Society and Governments Coverage (Rural & Others) Optimal use of public ressource (Frequency) Efficient use of public funds Safer and Reliable services (Electrical Utilities, Rail) 	

Conclusion

- Electric Utilities and Rail are critical infrastructure industries essential to Canada's public safety and economic well-being
- □ CIOs will be better served with PVNO
 - □ Improved reliability and security
 - Innovation enabler for smart grid and rail industry
- Technology is available and based on industry standards
- Regulatory challenges need to be addressed
 - □ CIO's access to an MNC as PVNO
 - CIO's ability to participate in a Shared RAN with access to spectrum

Thank you !

BACKUP

CIO/PS PVNO around the world

Europe

2014-03 <u>Netherlands</u>: Amended its IMSI numbering plan to allocate an MNC for CIO/PS and another for Industrial sector

Motivated by Enexis utility deployment of smart metering and issues about SIM card lock-in
 Enexis world's first PVNO with one MNO was put in service in nov. 2015.

2015-08 <u>Italy</u>: Enel applied for an MVNO license for its private use (metering data)

□ Enel concluded an exclusive wholesale agreement with TIM (major MNO in Italy).

Australia

2018-10 RFP issued by NSW Telco Authority for a National Public Safety Mobile Broadband POC.

PVNO model with multi-carrier in metro and regional areas. + RAN sharing model for coverage expansion.
 Input for Australian future national PSBN

Canada

2012-2014 Joint publication IREQ - Ericsson on LTE for Smart Grid [IEEE Canadian review, spring 2014].

□ Covers utilities concerns and approaches including PVNO and shared RAN scenarios.

2018-10 CEA request CRTC to grant a shared MNC and associated reliefs (PVNO)

□ CRTC encourage CEA to wait for the 2019-2020 wireless framework review.

CIOs steps toward PVNO and beyond (1/2)

1. Break MNO's SIM cards lock-in : **eUICC**

- Get CIO eSIM + GSMA Subscription Management Service Provider
- □ Ask MNOs for eSIM integration service
- □ Replace existing MNO's SIMs by CIO eSIM with an MNO profile

Benefit:

□ Remotely on demand change MNOs on each device

2. Get control of your wireless IP addresses and APN : PGW

- □ Acquire PGW (on-premises or as a service)
- Ask MNOs to route CIO APN traffic to the new PGW

Benefits:

- Complete control over the IP addressing
- □ Change MNOs and keep IP addresses (IP anchor point)
- □ Security: IPSec Transport between CIO PGW and MNO SGW

CIOs steps toward PVNO and beyond (2/2)

3. Control security keys + Active-Active MNO diversity: **PVNO**

- Get an IMSI range within <u>CIO shared MNC</u>
- □ Acquire HSS (on-premises or as a service)
 - Remotely OTA replace on the eSIM the MNO profile by CIO's (IMSI + keys)

Benefits:

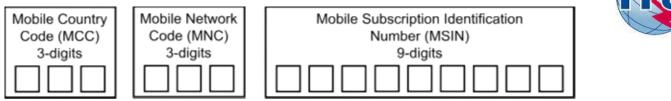
Complete control of the security keys and improved reliability + robustness

4. Expand coverage where needed : SHARED RAN

- Get in partnership, sponsorship with others (CIO, Muni, PS, MNO, ...)
- Built with CIO / PS reliability requirements

Benefits:

- Investments where it matters
- Leverage and efficient use of CIO funds
- Contribute to CIO social responsibility



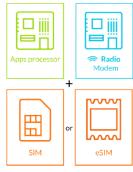
A GLOBAL INITIATIVE

What is IMSI / MNC

International Mobile Subscription Identity

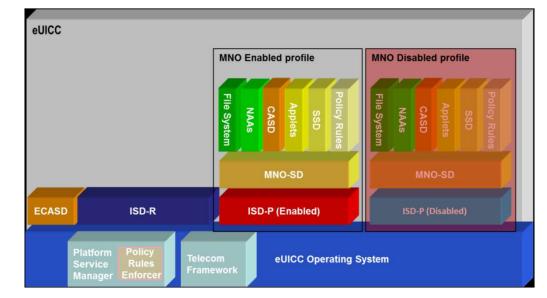
- Uniquely identifies user subscription to cellular network (MNC) and country (MCC) (also used by satellite and Tetra terminals)
- □ Conforms to ITU E.212 numbering and part of 3GPP std.
- CNA allocates MNC to operators according to CRTC guidelines http://www.cnac.ca/other_codes/imsi/imsi_codes.htm
- Canada MCC is 302
- Currently 2 digits MNC are allocated by CNA (roaming compatibility with GSM in Europe)
- □ Each 3 digits MNC has **1 Billion** possible subscription
- □ Part of in the service provider profile stored on the SIM/eSIM (with the encryption key)
- 20 Hydro-Québec

dministrator


A GLOBAL INITIATIV

eSIM a.k.a. eUICC

Physical form factors



ARM iSIM – IoT futur is now

Information within eUICC

GSMA

- **NAA (Network Access Application)**
 - Contain the Network Access Credentials (IMSI, Ki/K keys)