CN's shared PSBN LTE Proof Of Concept

 \Box

Proof of concept overview RAC WCC meeting – June 21st, 2021

CN's LTE PoC Project Overview - Objectives

- Assess the benefit of dedicated broadband wireless capability when planned, integrated, operated, and maintained by rail
- Evaluate the feasibility of a shared radio access network amongst rail, public safety, and/or commercial cellular providers by leveraging Quality of Service (QoS) prioritization, a native LTE functionality
- Foster CN's and RAC's objective to obtain regulatory clearance to operate LTE radio sharing on Public Safety Band 14 (FDD 10 + 10 MHz paired spectrum), while demonstrating mutually beneficial outcomes both, for the rail industry and remote communities

LTE PoC Project – Technical Aspects

Tier-1 provider was selected to provide LTE equipment for both CN's Lab and Unity, SK sites. System Health / Dashboard Copy of Summ... V ~ System Health Dashboard LTE tower in Unity, SK Calgary Alarms _ Discovery V Winnipeg Configurator v North Dakota LTE lab at CN Québec Minnesota Innovation, Science and Innovation. Sciences et Page 1 of 3 Headquarters 4G Economic Development Canada Développement économique Canada Montréal **RADIO LICENCE** Leaflet Issued under the authority of the Minister of Industry in accordance with the Radiocommunication Act and Regulations made thereunder This licence may be modified before the expiry date shown. For the latest legal version and status of this licence, please consult the Innovation, Science and Economic Development Canada web site at http://www.ic.gc.ca/spectrum Connected Assets ... Connected Sims ... EFFECTIVE DATE EXPIRY DATE LICENCE NUMBER ACCOUNT NUMBER 010859331-002 September 4, 2020 March 31, 2022 051080241875 20 Total **DA Access Points** 2 Band 14 (700 MHz) LICENCE HOLDER TYPE Working Not Working 2 Working 0 Not Working experimental license for Radiocommunication user Unity, SK 2 **DA Edges** Licence mailing address Authority to operate this (these) licensed station(s) is granted to: Canadian National Railway Company 13 Canadian National Railway Company 2 Working 0 Not Working Telecom Engineering (VN109925) Telecom Engineering (VN109925) 935, de la Gauchetiere st. W, 11 FL 935, de la Gauchetiere st. W, 11 FL Montreal QC Montreal QC H3B 2M9 H3B 2M9

Unity Installation – Overview & Installation

BBU

Base Band Unit, processes baseband. Connected to the RRU via fiber cables. Connected to the Juniper Router

Unity Tower/Site

EPC in a box LTE Core Linux Application server Houses the Opid back office instance

eNodeB RRUs 3 sectors providing Radio access to LTE band 14

Unity Drive tests - Objectives

Cell edge definition: UL Thput > 2 Mbps performance objective

Unity Acceptance Tests – Sanity Check

	Peak Throughput	Sector ID	Peak PDSCH DL Throughput <mark>Mbps</mark>	Status	Peak PUSCH UL Throughput Mbps	Status
STATIONARY TEST		Sector 1	95.6	PASS	29.0	Pass
		Sector 2	95.4	PASS	29.0	Pass
		Sector 3	95.5	PASS	29.0	Pass
	Latency	Test	Sector ID	Expected	Actual	Status
		Connect ion Setup	Sector 1	sec	3.00	Pass
STA			Sector 2		2.00	Pass
<i>о</i> л			Sector 3		2.16	Pass
		RTT	Sector 1	msec	20.2	Pass
			Sector 2		22.2	Pass
			Sector 3		19.6	Pass
ntra-Site HO	Direction	Test	PCI to PCI/ Sec to Sec		Actual	Status
NON STATIONARY TEST	cw	HOSR	Sec1 to Sec2	msec	6	Pass
			Sec2 to Sec3		35	Pass
			Sec3 to Sec1		16	Pass
	ccw	HOSR	Sec3 to Sec2	msec	30	Pass
			Sec2 to Sec1		14	Pass
			Sec1 to Sec3		15	Pass

On par with optimal expected technology performance

Unity Hi-rail tests – DL Optimization drives

Unity Hi-rail tests – UL Optimization drives

2021 Google - Map data @2021 Tele Atlas, Imagery @2021 Terra Metrics

@2021 Google - Map data @2021 Tele Atlas, Imagery @2021 Terra Metric

Quality of Service lab testing- Objective & parameters

Objective

 Validate the impact of QoS functionality on messaging (ITCM-like) delay under various network and radio conditions

Observation Thresholds

- Warning threshold: Messaging service is deemed to be in a marginal state if single end-to-end latency exceeds 5 seconds
- Fault threshold: 10 seconds is considered an imminent train enforcement condition due to excessive queuing

ITCM like performance testing

VARIABLE RF CONDITIONS – Baseline results: No QoS vs 4 x BE contenders

Qpid Latency (s)	
Average	3.23	
Max	39.87	
Min	0.09	
Standard Deviation	7.49	

Test Case Descriptions: Varying RF in Commercial network configuration of a BE Qpid in contention from 4 BE UEs

Results & Observations:

- In a commercial cellular network with no QoS or control over coverage, Qpid latency could quickly rise above acceptable limits
- Latency high when RSRP < -110 dBm & SINR < 0 dB

VARIABLE RF CONDITIONS – MC QoS profile vs 4 x BE contending users

VARIABLE RF CONDITIONS -2xBE & 2xPS (Higher priority) and MC QoS profile

Conclusion: controlled coverage and QoS deliver "hand in hand"

Messaging over Best Effort wireless cellular communications is susceptible to inadequate messaging latency, such as over commercial networks' marginal coverage areas, and in the presence of traffic contention from other users

Quality of Service coordination among multiple user profiles ensures suitable messaging delay performance

- Combined with minimum coverage observance, QoS can deliver excellent messaging performance, even under contention from concurrent data intensive users
- Successful co-existence with Public Safety and Best Effort users is possible while maintaining adequate rail mission critical application performance

The main benefit of a rail operated LTE network is the ability to control both coverage and QPP (Quality of Service, Priority and Pre-emption) enabling mission-critical grade reliable, and highly capable performance

Backup slides

Abbreviations and Acronyms

BBU	Base Band Unit	
BE	Best Effort	
CIO	Critical Infrastructure Operator	
CQI	Channel Quality Indicator (1 to 15)	
DL	Downlink – from the Back Office to the UE	
DUT	Device Under Test	
eNB	eNodeB LTE radio providing over the air access to LTE	
EPC	Evolved Packet Core	
ISED	Innovation, Science, and Economic Development	
ITCM	Interoperable Train Control Messaging	
LTE	Long Term Evolution	
PS	Public Safety	
PSBN	Public Safety Broadband Network	
QCI	QoS Class Identifier	
QoS	Quality of Service	

Qpid	Open-source messaging system which implements the Advanced Message Queuing Protocol (AMQP)		
QPP	Quality of Service, Priority, and Pre-emption		
RAC	Railway Association of Canada		
RRU	Remote Radio Unit		
RSRP	Reference Signal Receive Power		
RSRQ	Reference Signal Receive Quality		
RV55	Sierra Wireless Airlink RV55 Gateway		
SINR	Signal-to-Interference Noise Ratio		
S10	Samsung Galaxy S10		
TEMS	Infovista software used to evaluate and characterize/collect LTE KPIs		
UL	Uplink – from the UE to the Back Office		
UE	User Equipment		
VLAN	Virtual Local Area Network		
WCC	Wireless Communications Committee		

Shared PSBN LTE ... what is it?

- □ Shared LTE (Long Term Evolution) PSBN (Public Safety Broadband Network) is a proposed public private partnership between:
 - Canadian Critical Infrastructure Operators (CIOs, e.g. the RAC and the CEA)
 - Public Safety Canada, and
 - potentially mobile service providers
 - with multi-faceted benefits to all involved parties

Railway Association

- Public Safety Canada has a mandate to facilitate the deployment of a nation-wide Public Safety Broadband Network (PSBN) for the First Responders' community (equivalent to FirstNet¹ in the US)
- PSBN is expected to be primarily operated by established Mobile Wireless providers as an augmentation to their networks, reusing mostly legacy infrastructure in exchange for spectrum
- □ Telecom operators have limited financial incentive to deploy in rural and remote regions where legacy telecommunications infrastructure is scarce

Shared PSBN LTE ... what's in it for Rail?

- Rail obtains access to dependable broadband wireless connectivity, fulfilling a significant part of our operational needs by leveraging our infrastructure in rural and remote Canada
- □ The proposal hinges on deploying LTE base stations on shared broadband spectrum allocated to PSBN, a precious asset (estimated economic value of Canada-wide license: CAD 600 million)
 - **Note:** Broadband spectrum, a scarce asset, has otherwise remained elusive to Industry as governmentled spectrum auctions are reserved to public mobile wireless service providers only

PTC-220 set-aside in US

Narrowband (PTC-220) versus PSBN spectrum order-of-magnitude comparison

Context - Reliable broadband wireless communications

- Rail dedicated wireless technologies, e.g., PTC 220 MHz, ATCS 900 MHz, VCCS 160 MHz work on narrowband dedicated spectrum, licensed to the rail industry
 - Despite their limited capacity they deliver on reliability, resiliency and availability
- □ As Operational Rail technology evolves it is expected to gradually impose higher capacity and performance requirements on the underlying communication networks
- □ Wireless broadband networks (LTE/5G) bring multiple orders-of-magnitude increase in capacity and performance
 - Commercial broadband services, however, cater primarily for consumer electronics, and do not ensure high availability, nor service reliability performance (no SLAs)
 - ✓ It's simply not part of the TELCOs' business model !
 - \checkmark ... hence, the quest for dedicated Broadband wireless capability

Government's awareness – Transport Canada's Rail Safety Act review 2018 – Call for action

A panel of experts mandated by Minister Garneau's office concluded:

- Dedicated radio spectrum is vital for putting an effective train control strategy in place across the national rail network. Spectrum, however, is in high demand, and individual railway companies cannot ensure sufficient bandwidth is available to meet their identified communication needs for high-speed mobile data_and radio spectrum."¹
- "A shared broadband network to support multi-modal transportation safety solutions requires a national approach, and engagement with multiple federal departments (e.g., Innovation, Science and Economic Development Canada or ISED, and Public Safety Canada)."¹
- □ The review made the point loud and clear. CN and its partners set out to work together on a decisive Industry/Government collaboration proposal to enable broadband wireless dedicated capability for rail in Canada

1 - Shared RAN PPP: Public Safety (PSBN), CIOs, MNOs for rural access

